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Introduction – PSO Precursors
In 1986 I made a computer model of
coordinated animal motion such as bird
flocks and fish schools. It was based on
three dimensional computational geometry
of the sort normally used in computer
animation or computer aided design.
I called the generic simulated flocking
creatures boids. The basic flocking model
consists of three simple steering behaviors
which describe how an individual boid
maneuvers based on the positions and
velocities its nearby flockmates.
Boids, Background and Update by Craig Reynolds

http://www.red3d.com/cwr/boids/

Reynolds, C. W. (1987) Flocks, Herds, and Schools:

A Distributed Behavioral Model, in Computer

Graphics, 21(4) (SIGGRAPH ’87 Conference

Proceedings) pages 25-34
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Introduction

I A population-based stochastic optimization technique modelled on
the social behaviors observed in animals or insects, e.g., bird
flocking, fish schooling, and animal herding. Originally proposed by
James Kennedy and Russell Eberhart in 1995.

I Initially they intended to model the emergent behavior
(i.e., self-organization) of flocks of birds and schools of fish.

I The coordinated search for food lets a swarm of birds land at
a certain place where food can be found.

I The behaviour was modeled with simple rules for information sharing
between the individuals of the swarm.

I Their model further evolved to handle optimization.

I The term particle was used simply because the notion of velocity
was adopted — particle seemed to be the most appropriate term in
this context.
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Introduction

I A population of particles (the swarm) — each particle represents a
location in a multidimensional search space.

I The particles start at random locations and with random velocity.

I The particles search for the minimum (or maximum) of a given
objective function by moving through the search space.

I The analogy to reality (in the case of search for a maximum) is:
the objective function measures the quality or amount of the food at
each place and the particle swarm searches for the place with the
best or most food.
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Introduction
I The movements of a particle depend only on:

1. its velocity and
2. the locations where good solutions have already been found by the

particle itself or other (neighboring) particles in the swarm.

I This is in analogy to bird flocking where each individual makes its
decisions based on:

1. cognitive aspects (modeled by the influence of good solutions found
by the particle itself) and

2. social aspects (modeled by the influence of good solutions found by
other particles).

I The swarm of particles uses no gradient information.
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The main idea
The particle’s move — two attractors:

I Each particle keeps track of the coordinates in the search space
which are associated with the best solution it has found so far (the
corresponding value of the objective function is also stored).

I Another ”best” value that is tracked by each particle is the best
value obtained so far by any particle in its topological
neighborhood (when a particle takes the whole population as its
neighbors, the best value is a global best).

I At each iteration the velocity of each particle is changed towards the
above-mentioned two attractors: (1) personal and (2) global best
(or neighborhood best) locations.

I Also some random component is incorporated into the velocity
update.
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Particle Swarm
1: Initialize location and velocity of each particle x ∈ Pswarm.
2: repeat
3: evaluate (Pswarm)
4: for all xj from Pswarm do
5: update the personal best position
6: update the global best position . depends on the neighborhood
7: end for
8: for all xj from Pswarm do
9: update the velocity

10: compute the new location of the particle
11: end for
12: until termination condition met
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Velocity and location update in Rn:

vt+1 = vt + at+1 ,
xt+1 = xt + vt+1

Each coordinate is evaluated separately:

at+1
j = ϕ1 · r t1 (y t

j − x tj ) + ϕ2 · r t2 (y∗tj − x tj ) ,

[Kennedy and Eberhart, 1995]

where:
vt — particle’s velocity,
xt — particle’s location,
atj — particle’s acceleration,

y t
j — the best location the particle xt has found so far,

y∗tj — the best location obtained so far by any particle in the neighborhood of xt .

r1, r2 — random values: U(0, 1).
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The neighborhood

I A particle’s neighborhood is defined as the subset of particles which
it is able to communicate with.

I The first PSO model used an Euclidian neighborhood for particle
communication, measuring the actual distance between particles to
determine which were close enough to be in communication.

I The Euclidian neighborhood model was abandoned in favor of less
computationally intensive models when research focus was shifted
from biological modeling to mathematical optimization.

I Topological neighborhoods unrelated to the locality of the particle
came into use (including a global neighborhood, or gbest model,
where each particle is able to obtain information from every other
particle in the swarm).
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Topological neighborhoods

I Local topology — any swarm model without global communication.

I One of the simplest form of a local topology is the ring model. The
lbest ring model connects each particle to only two other particles in
the swarm.

I The lbest swarm model showed lower performance, that is, slower
convergence rate relative to the gbest model.

I The much faster convergence of the gbest model seems to indicate
that it produces superior performance, but this is misleading — risk
of premature convergence.
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PSO and EC: Comparison

Similarities

I Both PSO and EC are population
based.

I Both PSO and EC use fitness
concept.

Differences

I In PSO less-fit particles do not die
(no ”survival of the fittest”
mechanism)

I In PSO there is no evolutionary
operators like crossover or mutation
but each particle is varied according
to its past experience and relationship
with other particles in the population
(swarm).
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Disadvantage of the approach from 1995

I It is necessary to clamp particle velocities in this original algorithm
at a maximum value vmax:

v t+1
j =

{
v t+1
j if v t+1

j < vmaxj
vmaxj otherwise

I Without this clamping in place the system was prone to entering a
state of explosion, wherein the random weighting of the r1 and r2
values caused velocities and thus particle positions to increase
rapidly, approaching infinity.
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Disadvantage of the approach from 1995

I vmax method — viewed as both artificial and difficult to balance:

1. very large spaces required larger values to ensure adequate
exploration, while

2. smaller spaces required very small values to prevent explosion-like
behavior on their scale.

I a poorly-chosen vmax could result in extremely poor performance,
yet there was no simple, reliable method for choosing this value
beyond trial and error.
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Disadvantage of the approach from 1995

I The vmax parameter drawbacks:

1. vmax is problem dependent,
2. does not controls the positions, only the step sizes.

I Further development of vmax mechanism:

1. dynamically decrease vmax when gbest does not improve over τ
iterations:

vmax t+1
j =

{
β · vmax t

j if F (x̂t) ≥ F (x̂t−t′) ∀t′ ∈ {1, . . . , τ}
vmax t

j otherwise

where 0 < β < 1 and β is also decreased by 0.01.
2. exponentially decreasing vmax during the process of search:

vmax t+1
j = (1− (t/nt)

α)vmax t
j
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Convergence analysis
In [Clerc and Kennedy, 2002] authors presented convergence analysis for the
approach from 1995. This shed some light on the problem of parameters tuning for
the convergent behaviour of a swarm.

I Essential properties:

1. stability of particles — convergence of particles to a point in the
search space

2. local convergence property — the PSO algorithm converges to a
local optimum

I Aim of analysis:
define boundaries for the parameters of PSO in such a way that if the
parameters are selected in these boundaries, the particles are stable.
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Convergence analysis
In [Clerc and Kennedy, 2002] authors assumed that:

1. the particle moves in one-dimensional search space,

2. the rules of the particle’s movement are deterministic, that is, random vales in
the formula are replaced by their expected values (equal 0.5)

3. both the attractors remain in the same place of the search space,

4. we have just one particle to observe (due to the fact that global attractor
remains unchanged, there is no any other communication between particles).

Thus, all the further equations consider a value of x instead of a vector x.
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Convergence analysis – the stable point
The particle reaches equilibrium point when velocity equals zero:

ϕ1(y − x) + ϕ2(y∗ − x) = 0 (1)

that is:
ϕ1y + ϕ2y

∗ = ϕ1x + ϕ2x . (2)

This particular location x where there is no velocity equals:

x =
ϕ1y + ϕ2y

∗

ϕ1 + ϕ2
(3)
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Convergence analysis – the stable point
Assuming that equilibrium point is a local attractor:

y ← ϕ1y + ϕ2y
∗

ϕ1 + ϕ2
. (4)

Let’s substitute x by y in Eq. (2). This gives:

yϕ1 + yϕ2 = ϕ1y + ϕ2y
∗ ⇒ y = y∗ (5)

that is, the equilibrium state is truly obtained when the local attractor is
also a global attractor.
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Convergence analysis
Reformulation of the velocity equation:
Let’s redefine ϕ = ϕ1 + ϕ2 and y = ϕ1y+ϕ2y

∗

ϕ1+ϕ2
.

This gives:

v t+1 = v t + ϕ(y − x t), (6)

x t+1 = x t + v t+1, (7)

where y i ϕ are constant for any t.

IBS PAN

Swarm

Convergence analysis
Let z t represents difference between the current location of a particle and
optimum: z t = y − x t

{
v t+1 = v t + ϕz t ,
z t+1 = −v t + (1− ϕ)z t .

(8)

This way a basic simplified dynamic system can be defined:

Pt+1 = M × Pt , (9)

where:

M =

[
1 ϕ
−1 1− ϕ

]

2×2

Pt =

[
v t

z t

]

2×1
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Convergence analysis
In the context of the dynamic system theory:

I Pt — the particle state made up of its current position and velocity,

I M — the dynamic matrix whose properties determine the time behavior of the

particle (asymptotic or cyclic behavior, convergence, etc.),

In general, the initial particle state is not at equilibrium.

It is of highest practical importance to determine:
I whether the particle will eventually settle at the equilibrium (that is if the

optimization algorithm will converge) and

I how the particle will move in the state space (that is how the particle will sample

the state space in search of better points).

Standard results from dynamic system theory say that the time behavior
of the particle depends on the eigenvalues of the dynamic matrix.
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Convergence analysis
Eigen values of M are the solutions of characteristic polynomial, that is,
roots of the determinant det(λI −M):

det

([
λ 0
0 λ

]
−
[

1 ϕ
−1 1− ϕ

])
=

det

([
λ− 1 −ϕ

1 λ− 1 + ϕ

])
= λ2 + (ϕ− 1)λ+ 1

Thus: 



λ1 = 1− ϕ
2

+

√
ϕ2−4ϕ

2
,

λ2 = 1− ϕ
2
−
√
ϕ2−4ϕ

2
.

(10)
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Convergence analysis

λ =

complex number︷ ︸︸ ︷

1− ϕ

2︸ ︷︷ ︸
real

±
√
ϕ2 − 4ϕ

2︸ ︷︷ ︸
imaginary or real

Assuming that:
ϕ1 > 0, ϕ2 > 0 and ϕ = ϕ1 + ϕ2,

one can discuss just three cases:

1. 0 < ϕ < 4 (the solution is a complex
number),

2. ϕ > 4 (the solution is a real value),

3. ϕ = 4 (the special case).

-4

-3

-2

-1

 0

 1

 2

 3

 4

-1  0  1  2  3  4  5

imaginary and real

real

ϕ2 + 4ϕ

Figure: ϕ intervals for λ1 and λ2

being a real or a complex number
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Convergence analysis
The particle location in k-th step of the algorithm can be obtained from:

Pk = Mk × P0 (11)

Thus, in searching for convergent behaviour of a particle we need to find
ϕ i k such that:

Mk = I . (12)
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Convergence analysis

det(

[
1 ϕ
−1 1− ϕ

]
) > 0 (equal to 1, in fact), so it exist P so that:

P−1MP = Λ (13)

where:

Λ =

[
λ1 0
0 λ2

]
(14)

Therefore, eventually we have to solve Λk = I :

[
λk1 0
0 λk2

]
=

[
1 0
0 1

]
, that is, we must have λk1 = λk2 = 1. (15)
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Convergence analysis
Let’s remind that we have:
{
λ1 = 1− ϕ

2 +
√

∆,

λ2 = 1− ϕ
2 −
√

∆
where ∆ =

ϕ2 − 4ϕ

2
=
(

1− ϕ

2

)2

− 1

(16)
Thus, λk1 = λk2 = 1 can be found ⇐⇒
the solutions of characteristic polynomial are complex numbers, that is,
ϕ2−4ϕ

2 < 0, which means that ϕ < 4 must be satisfied.
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Convergence analysis
Solutions of λk1 = λk2 = 1 and ϕ < 4:

(k, ϕ) = (3, 3), (4, 2), (5,
3−
√

5

2
), (5,

3 +
√

5

2
), (6, 1) (17)

In these cases, after a number of steps the particle goes back to its starting position.

How to show this?
Print figures with subsequent positions of a particle in 2-dimensional space speed
vs. distance to attractor, that is, v × z for z t = y − x t and:

{
v t+1 = v t + ϕz t ,
z t+1 = −v t + (1− ϕ)z t .

(18)
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Convergence analysis

The deterministic model of a particle movement
1: Initialize location, attractor and velocity of a particle, for example, x =

1; y = 1, v = 1.

2: Initialize ϕ . for example, ϕ ∈ 3, 2, 3−
√

5
2

, 3+
√

5
2

, 1
3: z = y − x . update the reference variable z
4: repeat
5: v = v + ϕz . update the speed
6: x = x + v . update the location
7: z = y − x . update z
8: cout << "v: " << v << "�z: " << z << "�x: " << x << endl;

9: until termination condition met
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Convergence analysis
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Figure: Cyclic movement of a particle for different values of

(k, ϕ) = (3, 3), (4, 2), (5, 3−
√

5
2

), (5, 3+
√

5
2

), (6, 1).
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Convergence analysis
For other values of ϕ but satisfying also ϕ < 4:
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Figure: Quasicyclic movement of a particle for different values of ϕ.
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Convergence analysis
For ϕ > 4 the values of λ1 and λ2 are real:
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Figure: Non-cyclic movement of a particle for different values of ϕ.

There is no chance for even quasicyclic behaviour..
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Inertia weight parameter
Obtaining convergent behaviour of a swarm was a real pain. Therefore..

I A few years after the initial PSO publications, a velocity equation
with a new parameter was introduced — the inertia weight
parameter w :

v t+1
j = w · v t

j + c1r
t
1 (y t

j − x tj ) + c2r
t
2 (y∗tj − x tj ) ,

[Shi and Eberhart, 1998]
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Inertia weight parameter

I w — designed to replace vmax by adjusting the influence of the
previous particle velocities on the optimization process.

I By adjusting the value of w , w > 0, the swarm has a greater
tendency to eventually constrict itself down to the area containing
the best fitness and explore that area in detail.
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Velocity components

v t+1 = w · v t
j + c1 · r t1 (y t

j − x tj ) + c2 · r t2 (y∗tj − x tj ) ,

1. previous velocity: w · v t
j

1.1 inertia component
1.2 memory of previous flight direction
1.3 prevents particle from drastically changing direction

2. cognitive component: c1 · r t1 (y t
j − x tj )

2.1 quantifies performance relative to past performances
2.2 memory of previous best position
2.3 nostalgia

3. social component: c2 · r t2 (y∗tj − x tj )

3.1 quantifies performance relative to neighbors
3.2 envy
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Inertia weight parameter

I For w ≥ 1

1. velocities increase over time
2. swarm diverges
3. particles fail to change direction towards more promising regions

I For 0 < w < 1

1. particles decelerate
2. convergence also dependent on values c1 and c2

I The authors suggested using w as a dynamic value over the
optimization process:

1. starting with a value greater than 1.0 to encourage exploration, and
2. decreasing eventually to a value less than 1.0 to focus the efforts of

the swarm on the best area found in the exploration.
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Inertia weight parameter
Dynamically changing inertia weights:

I w ∼ N(0.72, σ)

I linear decreasing:

w(t + 1) = (w(0)− w(nt)) · nt − t

nt
+ w(nt)

I non-linear decreasing:
w(t + 1) = α · w(t)

where α = 0.975, w(0) = 1.4 and w(nt) = 0.35.

I based on relative improvement for i-th particle:

wi (t + 1) = w(0) + (w(nt)− w(0)) · e
mi+1 − 1

emi+1 + 1

where the relative improvement mi is estimated as

mi (t) =
F (y∗t)− F (xti )

F (y∗t) + F (xti )
where y∗t is the global attractor
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Convergence analysis
The convergence analysis for the model with the inertia weight parameter
([Shi and Eberhart, 1998]):

v t+1
j = w · v t

j + c1 · r t1 (y t
j − x tj ) + c2 · r t2 (y∗tj − x tj ) , (19)

x t+1
j = x tj + v t+1

j (20)

is presented in [van den Bergh and Engelbrecht, 2006].

From a system of equations:

v t+1 = w · v t + ϕ1(y t − x t) + ϕ2(y∗t − x t), (21)

x t+1 = x t + v t+1 (22)

a recursive formula for particle coordinates can be derived:

x t+1 = (1− w − ϕ1 − ϕ2)x t − wx t−1 + ϕ1y + ϕ2y
∗ (23)
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A model of a particle
In [van den Bergh and Engelbrecht, 2006] authors also assumed that:

1. the particle moves in one-dimensional search space,

2. the rules of the particle’s movement are deterministic, that is, random vales in
the formula are replaced by their expected values (equal 0.5)

3. both the attractors remain in the same place of the search space,

4. we have just one particle to observe (due to the fact that global attractor
remains unchanged, there is no any other communication between particles).

Thus, all the further equations consider a value of x instead of a vector x.
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The formula

x t+1 = (1− w − ϕ1 − ϕ2)x t − wx t−1 + ϕ1y + ϕ2y
∗ (24)

can be expressed as a product:



x t+1

x t

1


 =




1 + w − ϕ1 − ϕ2 −w ϕ1y + ϕ2y∗

1 0 0
0 0 1







x t

x t−1

1




The characteristic polynomial of a 3× 3 matrix is:

(1− λ)(w − λ(1 + w − ϕ1 − ϕ2) + λ2). (25)

which has a trivial root of λ = 1 and two other solutions:
{

λ1 = 1+w−ϕ1−ϕ2+∆
2

,

λ2 = 1+w−ϕ1−ϕ2+∆
2

.
where: ∆ =

√
(1 + w − ϕ1 − ϕ2)2 − 4w . (26)
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When we know eigenvalues, we can switch from the recursive formula to the formula
without recursion.

For the proposed deterministic model a coordinate of the solution can be evaluated for
any time t:

x t = k1 + k2λ
t
1 + k3λ

t
2 (27)

where:
k1 = ϕ1y+ϕ2y

∗
ϕ1+ϕ2

k2 = λ2(x0−x1)−x1+x2
∆(λ1−1)

k3 = λ1(x1−x0)+x1−x2
∆(λ2−1)

(28)

for a given x0, x1 and x2 = (1 + w − ϕ1 − ϕ2)x1 − wx0 + ϕ1y + ϕ2y∗.

Eq. (27) is valid as far as y i y∗ remain unchanged.

If any better solution is found, y i y∗ should be updated and k1, k2 i k3 should be

recalculated.
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In [van den Bergh and Engelbrecht, 2006] authors prove that:

x t converges (more or less rapidly) to

lim
t→+∞

x t = k1 =
ϕ1y + ϕ2y∗

ϕ1 + ϕ2
, (29)

as long as the following condition is met:

max{||λ1||, ||λ2||} < 1. (30)
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Figure: An experimentally obtained map.
Source: [van den Bergh and Engelbrecht, 2006].

.
The intensity of each point on the grid represents the magnitude max{||λ1||, ||λ2||},
with lighter shades representing larger magnitudes.
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The only problem is . . .
. . . how to tune the PSO control parameters w , ϕ1 i ϕ2?

Precisely: the number of possible configurations satisfying system of inequalities:




w > 0 ∧ w < 1,
ϕ1 + ϕ2 > 0,
w > 0.5(ϕ1 + ϕ2)− 1

(31)

is infinitely large. /
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Application of the convergence rules

1. Select a point in the region for which the particle strictly converges; ϕconv and
wconv.

2. Evaluate a new velocity of a particle with the formula, for example:

v t+1
j = wconv · v t

j + ϕconv · r t(y t
j − x tj ) + ϕconv · (1− r t)(y∗tj − x tj ) (32)

instead of:

v t+1
j = w · v t

j + c1 · r t1 (y t
j − x tj ) + c2 · r t2 (y∗tj − x tj ) (33)

But it is still not clear . . .

I which point ϕconv and wconv should be selected?

I do we have to keep this point through the entire search process?

I do all the particles in the swarm should have the same values of φconv and
wconv?

I . . .
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1
JAN

Another method of balancing global and local searches known as constriction
was being explored simultaneously with the inertia weight method and was oc-
casionally referenced in PSO literature, though the actual research proposing its
use was not published until 2002.

D. Bratton, J. Kennedy, Defining a Standard for Particle Swarm Optimization, 2007 IEEE

Swarm Intelligence Symposium
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General representation
In [Clerc and Kennedy, 2002] a more general representation is produced by adding five
coefficients α, β, γ, δ, η:

{
v t+1 = αv t + βϕz t ,
z t+1 = −γv t + (δ − ηϕ)z t .

(34)

Version from [Kennedy and Eberhart, 1995] is obtained for α = 1, β = 1, γ = 1, δ = 1
i η = 1.

Step back to classic equations (where z = y − x t) looks like here:
{

v t+1 = αv t + βϕ(y − x t),
x t+1 = y + γv t − (δ − ηϕ)(y − x t).

(35)
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General particle swarm algorithm
1: Assign κ and ϕmax

2: Calculate χ, α, β, γ, δ, η
3: Initialize population, i.e., locations and velocities of particles, for example, random:

xi , vi , and pi = xi .
4: repeat
5: for i = 1 to popsize do
6: if F (xi ) < F (pi ) then
7: pi = xi . update the particle attractor
8: end if
9: end for

10: for i = 1 to popsize do
11: p∗ = ∀x∈{N (xi )∪xi} arg min F (x) . update the neighborhood attractor

12: for d = 1 to dimensions do
13: ϕ1 = U(0, 1) · ϕmax/2
14: ϕ2 = U(0, 1) · ϕmax/2
15: ϕ = ϕ1 + ϕ2

16: y = ((ϕ1pid ) + (ϕ2p
∗
d ))/ϕ

17: vid = αvid + βϕ(y − xid ) . update the speed based on the old vid
18: xid = y + γvid − (δ − ηϕ)(y − xid ) . update the location based on xid

and the updated vid
19: end for
20: end for
21: until termination condition met
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Particular classes of Swarm
Proposed in [Clerc and Kennedy, 2002]:

1. Model Type 1: {
v t+1 = χ(v t + ϕz t),
z t+1 = −χ(v t + (1− ϕ)z t).

(36)

2. Model Type 1’: {
v t+1 = χ(v t + ϕz t),
z t+1 = −v t + (1− ϕ)z t .

(37)

3. Model Type 1”: {
v t+1 = χ(v t + ϕz t),
z t+1 = −χv t + (1− χϕ)z t .

(38)

The last model made a successful career.
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Model Type 1”

I χ is derived from the existing constants in the velocity update
equation:

χ =
2 · κ

|2− ϕ−
√
ϕ2 − 4ϕ|

where ϕ = c1 + c2 and ϕ > 4

I The factor κ controls balance between exploration and exploitation:

1. κ ≈ 0: fast convergence, local exploitation,
2. κ ≈ 1: slow convergence, high degree of exploration.
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Observation:
It was found that when ϕ < 4, the swarm would slowly “spiral”
toward and around the best found solution in the search space with
no guarantee of convergence, while for ϕ > 4 and κ ∈ [0, 1] conver-
gence would be quick and guaranteed.

Constriction was being explored simultaneously with the inertia weight
method and was occasionally referenced in PSO literature, though the
actual research proposing its use was not published until 2002.
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Velocity update in Rn:

v t+1
j = χ[v t

j + c · r t1 · (y t
j − x tj ) + c · r t2 · (y∗tj − x tj )] ,

[Kennedy & Clerc, 2002]

r t1 i r t2 : uniform random values in 〈0, 1〉.
Using the constant ϕ = 4.1 to ensure convergence, the values

c = 2.05 χ = 0.729843788 are obtained.

The parameter values noted above are preferred in most cases when using
constriction for modern PSOs due to the proof of stability.
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Particle swarm algorithm Type 1”
1: Assign κ and ϕmax

2: Initialize population, i.e., locations and velocities of particles, for example, random:
xi , vi , and pi = xi .

3: repeat
4: for i = 1 to popsize do
5: if F (xi ) < F (pi ) then
6: pi = xi . update the particle attractor
7: end if
8: end for
9: for i = 1 to popsize do

10: p∗ = ∀x∈{N (xi )∪xi} arg min F (x) . update the neighborhood attractor

11: for d = 1 to dimensions do
12: ϕ1 = U(0, 1) · ϕmax,1/2
13: ϕ2 = U(0, 1) · ϕmax,2/2
14: vid = χ(vid + ϕ1(pid − xid ) + ϕ2(p∗d − xid )) . update the speed
15: xid = xid + vid . update the location based on xid and the updated vid
16: end for
17: end for
18: until termination condition met
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Synchronous vs asynchronous updates

I synchronous — personal best and neighborhood bests updated
separately from position and velocity vectors

1. slower feedback
2. better for gbest

I asynchronous — new best positions updated after each particle
position update

1. immediate feedback about best regions of the search space
2. better for lbest
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Acceleration coefficients c1 and c2

1. c1 = c2 = 0 . . .? ,
2. c1 > 0 c2 = 0 — particles are independent hill climbers performing

own local search processes,

3. c1 = 0 c2 > 0 — swarm is one stochastic hill-climber,

4. c1 = c2 > 0 — particles are attracted towards the average of y∗ and
y,

5. c2 > c1 — more beneficial for unimodal problems,

6. c1 > c2 — more beneficial for multimodal problems,

7. low c1 and c2 — smooth particle trajectories,

8. high c1 and c2 — more acceleration, abrupt movements.
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Adaptive acceleration coefficients c1 and c2

c1(t) = (c1,min − c1,max) · t
nt

+ c1,max ,

c2(t) = (c2,min − c2,max) · t
nt

+ c2,max .

An improved optimum solution for most of the benchmarks was observed when

changing c1 from 2.5 to 0.5 and changing c2 from 0.5 to 2.5, over the full range of the

search.

[A. Ratnaweera, S.K. Halgamuge, H.C. Watson,

Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients, IEEE TEVC, 2004]
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Bare Bones PSO

I In [Kennedy, 2003] authors propose a PSO variant, which drops the velocity
term from the PSO equation and introduces a Gaussian sampling, based on the
swarm best (gbest or lbest) and personal best (pbest) information.

I Motivation:

1. The observed distribution of new location samples for a particle is a bell
curve centered midway between y t and y∗t and extending symmetrically
beyond them.

2. So, we should simply generate normally distributed random numbers

around the mean (y t + y∗t)/2.

I In BBPSO the canonical update equations are replaced by:

x t+1
i = N(µt , σt) where: µt = (y t + y∗t)/2 and σt = |y∗t − y t | (39)

In experimental research the canonical version performed competitively but not

outstandingly [Kennedy, 2003].
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Communication topologies

Communication topologies are expressed in the velocity update
procedure:

I gbest — each particle is influenced by the best found from the entire
swarm.

I lbest — each particle is influenced only by particles in local
neighbourhood.
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Communication topologies

Figure: (a) star topology used in gbest, Ring topology used in lbest, (c) Von
Neumann topology, and (d) Four clusters topology (aka ”small world graph”)
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Communication topologies
Balance between exploration and exploitation

I gbest model propagate information the fastest in the population;
while the lbest model using a ring structure the slowest.

I For complex multimodal functions, propagating information the
fastest might not be desirable.

I However, if this is too slow, then it might incur higher
computational cost.

I Mendes and Kennedy (2002) found that von Neumann topology
seems to be an overall winner among many different communication
topologies.
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Communication topologies
The adaptive random topology [Clerc, 2006]

I At the very beginning, and after each unsuccessful iteration (no
improvement of the best known fitness value), the graph of the
information links is modified.

I each particle informs at random K particles (the same particle may
be chosen several times), and informs itself.

I The parameter K is usually set to 3:
I each particle informs at less one particle (itself), and at most K + 1

particles (including itself)
I each particle can be informed by any number of particles between 1

and |S |.
I On average, a particle is often informed by about K others but the

distribution of the possible number of informants is not uniform.
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Communication Topologies — FIPS: Fully Informed PSO
In [Mendes et al., 2004] the form of the particle location and velocity formula given in
Model 1”([Clerc and Kennedy, 2002]):

{
v t+1 = χ(v t + ϕ(p − x t)),
x t+1 = x t + v t .

(40)

where ϕ = ϕ1 + ϕ2 and p = ϕ1y+ϕ2y
∗

ϕ1+ϕ2

uses an alternate form of calculating ϕ and p: ϕ =
∑

k∈N
ϕ
|N| and p =

∑
k∈N W(k)ϕy∑
k∈N W(k)ϕ

where N is the neighborhood of the evaluated particle and the function W(k) may
describe any aspect of the particle that is hypothesized to be relevant:

I the fitness of the best position found by the particle,

I the distance from that particle to the current individual,

I have return a constant value (eventually).
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Communication Topologies — FIPS: Fully Informed PSO
For the case where the function W(k) returns a constant non-zero value:

{
v t+1 = χ

[
v t +

∑
k∈N

(
ϕ
|N| (yk − x t)

)]
,

x t+1 = x t + v t .
(41)

Because all the neighbors contribute to the velocity adjustment, we say that the

particle is fully informed.
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Communication Topologies — FIPS: Fully Informed PSO
Convergence Properties [Montes de Oca and Stützle, 2008]

I In the Model 1” a particle tends to converge towards a point determined by p,
which a weighted average of its previous best y and the neighbourhood’s best y∗.

I In FIPS each particle uses the information from all its neighbors to update its

velocity, so:

1. the structure of the population topology has, therefore, a critical impact on
the behavior of the algorithm;

2. when a fully connected topology is used, the performance of FIPS is
considerably reduced – the particles explore in a region close to the
centroid of the swarm;

3. the larger the population, the stronger is the bias toward the centroid of
the swarm, therefore, increasing the diversity of the population by making
it larger, does not work (!);

4. enhancing the exploratory capabilities of the algorithm by using dynamic

restarts provides some benefits but these are problem-dependent.
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