

Distributed inventory: analysis of uncertainty sources. Ukraine case study

R.Bun, L.Kujii, O.Tokar, Ya.Tsybrivskyy State S&R Institute of Information Infrastructure, National Academy of Science of Ukraine Lviv, Ukraine

Main idea:

Distributed inventory uncertainty estimation uncertainty decreasing

Illustrations:

on the basis of IPCC Methodology

Traditional inventory

Large or small country ?

Ukraine 603,000 km²

25 regions

≈ 650 districts

 $S_{\text{Ukraine}} \approx 2 \cdot S_{\text{Poland}}$ $S_{\text{Ukraine}} \approx 7,5 \cdot S_{\text{Austria}}$

Irregularity of industry location

STU **Irregularity of emissions** of harmful substances into the atmosphere per km² 1,7 - 67,7 Чернігівськ Сумська Волинська (2.0)Рівненська (3.4)(1.7)(2.5)Київ Житомирська (213.0 (2.1)Львівська Київська (6.0)(8,8) Тернопільська Полтавська Харківська (5.3)(3,1) Хмельницька Геркаська (8,6)(3,4) вінницька (4.5) Луганська (19.8)(5.5) Івано-Франківськи Кіровоградська (13.3)Дніпропетровськ ne Закарпатська Чернівецька (3.3)29.5) Донецька 432 4.3) (67.7) Миколаївськ Запорізька (2.2)(12.3)Одеська Херсонська (3.4 (2.3)Республіка Крим (4.7)Севастополь (21.8)

Irregularity of forest fund and wood production

Non-uniform distribution GHG sinks emission sources

Effective tool for decision makers ⇒ ⇒ Distributed inventory

Distributed inventory levels:

The highest inventory level for the whole Ukraine

- Middle inventory level for separate regions/districts
- The lowest inventory level —

for elementary plots

The highest inventory level for the whole Ukraine

Output dataModelInput data (from database) $E = ||CO_2, CH_4, ... ||$ $\Leftarrow E = f(X) \quad \Leftarrow X = ||energy; industry; ... ||$

Traditional inventory

Middle inventory level for separate region/oblast

Output dataModelInput data (from database) $E_{region} = \|CO_2, CH_4, \dots \|$ $\Leftarrow E_{region} = f(X_{region})$ $\Leftarrow X = \|energy; industry; \dots \|$

Non-traditional inventory

Output data	Model	Input data (from database)
$\Delta \mathbf{E}_{\mathrm{el.}} = \ \mathbf{CO}_2, \mathbf{CH4}, \dots \ $	$\Leftarrow \Delta \mathbf{E}_{\mathrm{el.}} = \mathbf{f}(\Delta \mathbf{X}_{\mathrm{el.}})$	$\Leftarrow \Delta X_{el.} = energy; industry; $

Distributed inventory

Relation between distributed and lumped models – summing on all elementary plots yields result of traditional inventory

Structural scheme of software GIS "GHG"

Interrelations between tables of the database GHGInvNNNN.mdb

Digital map of Ukraine

Spatial database of Ukraine of scale 1:500 000

Major segments of the electronic map

- Vegetation and soils
- Land relief
- Settlements (inhabited localities)
- Hydrography and hydroengineering constructions
- Road network and constructions
- Bounds, enclosures and separate natural phenomena

Experimental measurements:

As a physical map ...

Distributed inventory results Energy sector:

CO₂ emissions from stationary combustion (2000)

Distributed inventory results Energy sector:

Mobile combustion - road vehicles, district level (2000)

Distributed inventory results Forestry:

Carbon sink into forest phytomass, district level (1996)

Positive features of approach

- Convenient information for decision makers in a country
- Efficiency for large area countries with highly non-uniform location of GHG sources and absorbers
- Transparency of inventory process on different scales and convenience of reporting
- Possibility of effective usage of remote sensing data
- Convenience of comparison with another results
- combination of geoinformation technologies and IPCC methodologies

Distributed inventory and Uncertainty ???

Example :

Energy sector, regional level

IPCC: Good Practice Guidance and <u>Uncertainty Management in National</u> <u>Greenhouse Gas Inventories</u> <u>Energy sector</u>

TABLE 2.6 Level of Uncertainty associated with Activity Data						
io ille source category ant outlined	Well Developed Statistical Systems		Less Developed Statistical Systems			
Sector	Surveys	Extrapolations	Surveys	Extrapolations		
Public Power, co-generation and district heating	less than 1%	3-5%	1-2%	5-10%		
Commercial, institutional, residential combustion	3-5%	5-10%	10-15%	15-25%		
Industrial combustion (Energy intensive industries)	2-3%	3-5%	2-3%	5-10%		
Industrial combustion (others)	3-5%	5-10%	10-15%	15-20%		
Biomass in small sources	10-30%	20-40%	30-60%	60-100%		
The inventory agency should judge which typ Source: Judgement by Expert Group (see Co-	be of statistical system be chairs, Editors and Expe	est describes their natio erts; Stationary Combus	nal circumstances.	nations for worked		

Absolute uncertainty CO₂ emissions from stationary combustion

- **1. Donetsk region** - 28,3 %
- 2. Dnipropetrovsk region 15,1 %
- **3. Lugansk region**

$$\Sigma = 53,0 \%$$

of all Ukraine GHG emission

Ukraine Uncertainty (Energy sector) U = 7,40 %

 $\Delta U = 1,38 \%$

Summary of approach

Distributed inventory

Leading region and leading activity ↓ Small investment for leaders ↓ Uncertainty decreasing

Thanks for your attention!