Laurens Brandes

Netherlands Environmental Assessment Agency

(RIVM-MNP)

Validation, Verification and Uncertainty Assessment for Improving the Netherlands' PER

Structure of the presentation

- The Netherlands' Pollutant Emission Register
 - organisation, general principles
 - monitoring industrial emissions
- Uncertainty assessments
 - greenhouse gases
 - acidifying substances
- Verification
- Conclusions

Netherlands PER: organisation

- Ministries of VROM and V&W: financial means, priorities, new or improved methodologies, reporting obligations
- RIVM-MNP: co-ordination of the annual compilation of the PER
- 5 Task forces: data collection, calculation and validation

Netherlands PER: general principles

- PER contains emissions to air, water and soil for about 170 substances
- 75% of the industrial emissions are directly reported by companies

Netherlands PER: monitoring industrial emissions

- Annual environmental reports
 - More accurate because plant-specific data is used, BUT:
 - Transparency of reporting: e.g. incomplete reporting of fuel use
 - Consistency with the non-reporting part of a sector
- Transparency is still insufficient
 - Statistics Netherlands showed that a sectoral top down calculation of fossil fuel related emissions provides more reliable, consistent and transparent emissions data
 - Comparison of company reports with the sectoral top-down estimates for verification of both estimates.
 - Electronic reporting since 2004 results in higher data quality

Uncertainties in greenhouse gas emissions

- NIR IPCC Tier 1 approach for annual emissions and emission trend
- Uncertainty values used from:
 - a national workshop held in 1999; default uncertainty estimates from the IPCC GPG and expert judgement of RIVM emission experts.
- Uncertainty values are comparable with the IPCC defaults.
- Most uncertainty estimates are based on expert judgement and therefore show a high degree of subjectivity.
- Useful for identifying most important uncertain sources
- A Tier 2 assessment resulted in similar magnitudes of overall uncertainty estimates. See next presentation by Harry Vreuls, SenterNovem

Uncertainties in greenhouse gas emissions: trend uncert.

- Recent Tier 2 uncertainty assessment by TNO
- Expert elicitation
 - Identifying sources of uncertainty and bias
 - Elicitation of Probability Density Functions (PDF)
 - Score for underlying knowledge base
 - Correlations
- Defaults from UN-ECE Emission Inventory Guidebook for non-key sources
- Monte Carlo analysis
- Results in so called NUSAP diagrams

NUSAP analysis: introducing pedigree criteria data quality

	Code	Proxy	Empirical	Method	Validation
	4	Exact measure	Large sample direct mmts	Best available practice	Compared with indep. mmts of same variable
	3	Good fit for measure	Small sample direct mmts	Reliable method commonly accepted	Compared with indep. mmts of closely related variable
	2	Well correlated	Modeled/derived data	Acceptable method limited consensus on reliability	Compared with mmts not independent
	1	Weak correlation	Educated guesses / rule of thumb	Preliminary methods unknown reliability	Weak / indirect validation
ע ע	0	Not clearly related	Crude speculation	No discernible rigour	No validation

Verification

- Air quality measurements from the Air quality monitoring network allows independent validation of emission trends
- Nitrogen oxide emissions and concentrations decreasing at same rate
- Trends in calc. and meas. concentration of ammonia are similar
- Absolute difference in level of about 30%. This may be explained by a possible underestimation of emissions and an overestimation of the dry deposition

Conclusions (1)

• Verification

- Comparison with other datasets is useful, in particular when incompleteness or systematic errors are suspected.
- Caution should be taken with respect to the precision of the conclusions drawn on the other datasets.
- Monitoring of industrial emissions
 - Use of plant-specific data is preferred. Conditions:
 - transparent reporting;
 - consistency with the non-reporting part of a sector.

Conclusions (2)

Uncertainty assessments

- Provide quantitative judgement of the inventory quality.
- Helpful for prioritizing improvement plans
- A Tier 1 uncertainty assessment may be sufficient for these purposes, since experience with more detailed Tier 2 assessments resulted in similar magnitudes of overall uncertainty estimates.
- Focusing on the order of magnitude of the individual uncertainty estimates provides a reasonable first assessment of the uncertainty of key source categories.
- NUSAP analysis is a useful tool to direct improvement actions to those areas where investment are most efficient.

End of presentation

- More information:
 - www.NUSAP.net
 - uncertainty management, expert elicitation, sensitivity analysis, risk communication
 - www.greenhousegases.nl
 - Information on greenhouse gas emissions and monitoring in The Netherlands
 - www.emissieregistratie.nl
 - Datawarehouse Emission Inventory
 - www.environmentaldata.nl
 - Environmental Data Compendium
 - <u>www.rivm.nl</u>
 - **RIVM Environment and Nature: publications and press releases**

Uncertainties in greenhouse gas emissions:

annual uncert.

Greenhouse gas	Tier-1	Tier-1	
	uncertainty	uncertainty	
	(calculated)	(estimated)	
Carbon dioxide	± 2%	± 3%	
Methane	± 17%	± 25%	
Nitrous oxide	± 34%	± 50%	
F-gases	± 21%	± 50%	
Total CO ₂ -equivalents	± 4%	± 5%	

	Top 10 sources contributing the most to total annual uncertainty in 2002					
		IPCC Source category	% of total			
			national			
			emissions			
	4D	Direct N2O from agricultural soils	1.5%			
	4D	Indirect N2O: nitrogen used in agriculture	1.4%			
	2X	N2O from nitric acid production	1.3%			
	6A	CH4 from solid waste disposal sites	1.1%			
	7X	N2O from polluted surface water	1.1%			
	1A	CO2 from stationary combustion: energy industries	1.1%			
	1A	CO2 from feedstock oil	1.0%			
	4A	CH4 from enteric fermentation: cattle	0.6%			
	1A	CO2 from mobile combustion: other	0.6%			
nca es	1A	CO2 from stationary combustion: other sectors	0.6%			

Validation, veri Laurens Brand

Greenhouse gas emissions in The Netherlands

• 1990-2002 calculated trend

- CO_2 +10%; traffic and energy sector.
- CH₄ -32%; waste sector, agriculture and energy.
- N₂O -7%; industry.
- F-gases -66% since 1995; industry.

Greenhouse gas emissions by sector

- Emissions from fuel combustion (1A): increase from 75% in 1990 to 80% in 2002
- Other emissions: 20% (industrial processes, agriculture and waste)

Reserve sheet 1: fuel mix

Fuel mix

 much gas, oil for transport and non-energy use, coal only for steel and power

National circumstances (1990 – 2002)

Population and households

• Population, number of households $15 \rightarrow 16$ million, $6 \rightarrow 7$ million

Agriculture

• Manure production

<u>Transport</u>

energy use

+30%

-18%

Energy intensive industry

- Large petrochemical industry
- 6 refineries
- Steel and aluminum production
- energy use as fuel
 -17%
- conversion to other products: +20%

Fuel mix

 much gas, oil for transport, coal only for steel and power

Validation, verification and uncert Laurens Brandes

